On Modelling of Nonlinear Systems and Phenomena with the Use of Volterra and Wiener Series
ثبت نشده
چکیده
This is a short tutorial on Volterra and Wiener series applications to modelling of nonlinear systems and phenomena, and also a survey of the recent achievements in this area. In particular, we show here how the philosophies standing behind each of the above theories differ from each other. On the other hand, we discuss also mathematical relationships between Volterra and Wiener kernels and operators. Also, the problem of a best approximation of large‐scale nonlinear systems using Volterra operators in weighted Fock spaces is described. Examples of applications considered are the following: Volterra series use in description of nonlinear distortions in satellite systems and their equalization or compensation, exploiting Wiener kernels to modelling of biological systems, the use of both Volterra and Wiener theories in description of ocean waves and in magnetic resonance spectroscopy. Moreover, connections between Volterra series and neural network models, and also input‐output descriptions of quantum systems by Volterra series are discussed. Finally, we consider application of Volterra series to solving some nonlinear problems occurring in hydrology, navigation, and transportation. http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 9 Number 1 March 2015 DOI: 10.12716/1001.09.01.11
منابع مشابه
Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کامل